Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.077
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 95-101, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650149

Osteoporosis is a common chronic bone disorder in postmenopausal women. Ginsenosides are primary active components in ginseng and the effects of various ginsenoside variants in osteoporosis treatment have been widely revealed. We planned to explore the impact of ginsenoside Rc on bone resorption in an osteoporosis rat model. We used ovariectomized rats to assess the potential impact of ginsenoside Rc on osteoporosis. µ-CT was implemented for analyzing the microstructure of the distal left femur in rats. H&E staining together with Masson staining were applied for bone histomorphometry evaluation. ELISA kits were implemented to detect serum concentrations of TRACP-5b, OCN, CTX, as well as PINP. Ginsenoside Rc treatment lessened the serum levels of TRACP-5b as well as CTX, while increasing serum levels of OCN, and PINP of OVX rats. Moreover, we found that ginsenoside Rc contributed to the synthesis of type I collagen via increasing Col1a1 and Col1a2 levels in femur tissues of ovariectomized rats. Our findings also revealed that ginsenoside Rc activated the TGF-ß/Smad pathway by increasing TGF-ß as well as phosphorylated Smad2/3 protein levels. Ginsenoside Rc alleviates osteoporosis in rats through promoting the TGF-ß/Smad pathway.


Ginsenosides , Osteoporosis , Ovariectomy , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Animals , Female , Osteoporosis/drug therapy , Osteoporosis/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Femur/drug effects , Femur/metabolism , Femur/pathology , Smad Proteins/metabolism , Rats , Collagen Type I/metabolism , X-Ray Microtomography , Tartrate-Resistant Acid Phosphatase/metabolism , Osteocalcin/metabolism , Osteocalcin/blood , Disease Models, Animal , Procollagen/metabolism , Procollagen/blood
2.
Cells ; 13(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38534359

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the relentless deposition of extracellular matrix (ECM), causing lung distortions and dysfunction. Animal models of human IPF can provide great insight into the mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches. In this study, we describe the effect of bleomycin concentration on disease progression in the classical rat bleomycin model. In a dose-response study (1.5, 2, 2.5 U/kg i.t), we characterized lung fibrosis at day 14 after bleomycin challenge using endpoints including clinical signs, inflammatory cell infiltration, collagen content, and bronchoalveolar lavage fluid-soluble profibrotic mediators. Furthermore, we investigated fibrotic disease progression after 2 U/kg i.t. bleomycin administration at days 3, 7, and 14 by quantifying the expression of clinically relevant signaling molecules and pathways, epithelial mesenchymal transition (EMT) biomarkers, ECM components, and histopathology of the lung. A single bleomycin challenge resulted in a progressive fibrotic response in rat lung tissue over 14 days based on lung collagen content, histopathological changes, and modified Ashcroft score. The early fibrogenesis phase (days 3 to 7) is associated with an increase in profibrotic mediators including TGFß1, IL6, TNFα, IL1ß, CINC1, WISP1, VEGF, and TIMP1. In the mid and late fibrotic stages, the TGFß/Smad and PDGF/AKT signaling pathways are involved, and clinically relevant proteins targeting galectin-3, LPA1, transglutaminase-2, and lysyl oxidase 2 are upregulated on days 7 and 14. Between days 7 and 14, the expressions of vimentin and α-SMA proteins increase, which is a sign of EMT activation. We confirmed ECM formation by increased expressions of procollagen-1Aα, procollagen-3Aα, fibronectin, and CTGF in the lung on days 7 and 14. Our data provide insights on a complex network of several soluble mediators, clinically relevant signaling pathways, and target proteins that contribute to drive the progressive fibrotic phenotype from the early to late phase (active) in the rat bleomycin model. The framework of endpoints of our study highlights the translational value for pharmacological interventions and mechanistic studies using this model.


Idiopathic Pulmonary Fibrosis , Procollagen , Rats , Humans , Animals , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Collagen/metabolism , Bleomycin , Disease Progression
3.
J Orthop Surg Res ; 19(1): 163, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429649

INTRODUCTION: This study examines bone turnover marker (BTM) variations between bone marrow and peripheral blood in osteoporotic and non-osteoporotic patients. BTMs offer insights into bone remodeling, crucial for understanding osteoporosis. METHODS: A total of 133 patients were categorized into osteoporotic and non-osteoporotic cohorts. BTMs-C-telopeptide cross-linked type 1 collagen (ß-CTX), serum osteocalcin (OC), Procollagen type I N-propeptide (P1NP), 25(OH)D-were measured in bone marrow and peripheral blood. Lumbar spine bone mineral density (BMD) was assessed. RESULTS: Osteoporotic patients exhibited elevated ß-CTX and OC levels in peripheral blood, indicating heightened bone resorption and turnover. ß-CTX levels in osteoporotic bone marrow were significantly higher. Negative correlations were found between peripheral blood ß-CTX and OC levels and lumbar spine BMD, suggesting their potential as osteoporosis severity indicators. No such correlations were observed with bone marrow markers. When analyzing postmenopausal women separately, we obtained consistent results. CONCLUSIONS: Elevated ß-CTX and OC levels in osteoporotic peripheral blood highlight their diagnostic significance. Negative ß-CTX and OC-BMD correlations underscore their potential for assessing osteoporosis severity. Discrepancies between peripheral blood and bone marrow markers emphasize the need for further exploration. This research advances our understanding of BTM clinical applications in osteoporosis diagnosis and treatment.


Bone Marrow , Osteoporosis , Humans , Female , Bone Marrow/diagnostic imaging , Procollagen , Biomarkers , Osteoporosis/diagnostic imaging , Bone Remodeling , Osteocalcin
4.
Endocrine ; 84(2): 711-719, 2024 May.
Article En | MEDLINE | ID: mdl-38334892

PURPOSE: Patients receiving long-term glucocorticoid (GC) treatment are at risk of osteoporosis, while bone effects of substitution doses in Addison's disease (AD) remain equivocal. The project was aimed to evaluate serum bone turnover markers (BTMs): osteocalcin, type I procollagen N-terminal propeptide (PINP), collagen C-terminal telopeptide (CTX), sclerostin, DKK-1 protein, and alkaline phosphatase (ALP) in relation to bone mineral density (BMD) during GC replacement. METHODS: Serum BTMs and hormones were assessed in 80 patients with AD (22 males, 25 pre- and 33 postmenopausal females) on hydrocortisone (HC) substitution for ≥3 years. Densitometry with dual-energy X-ray absorptiometry covered the lumbar spine (LS) and femoral neck (FN). RESULTS: Among BTMs, only PINP levels were altered in AD. BMD Z-scores remained negative except for FN in males. Considering T-scores, osteopenia was found in LS in 45.5% males, 24% young and 42.4% postmenopausal females, while osteoporosis in 9.0%, 4.0% and 21.1%, respectively. Lumbar BMD correlated positively with body mass (p = 0.0001) and serum DHEA-S (p = 9.899 × 10-6). Negative correlation was detected with HC dose/day/kg (p = 0.0320), cumulative HC dose (p = 0.0030), patient's age (p = 1.038 × 10-5), disease duration (p = 0.0004), ALP activity (p = 0.0041) and CTX level (p = 0.0105). However, only age, body mass, ALP, serum CTX, and sclerostin remained independent predictors of LS BMD. CONCLUSION: Standard HC substitution does not considerably accelerate BMD loss in AD patients and their serum BTMs: CTX, osteocalcin, sclerostin, DKK-1, and ALP activity remain within the reference ranges. Independent predictors of low lumbar spine BMD, especially ALP activity, serum CTX and sclerostin, might be monitored during GC substitution.


Addison Disease , Biomarkers , Bone Density , Glucocorticoids , Osteoporosis , Humans , Bone Density/drug effects , Female , Addison Disease/drug therapy , Addison Disease/blood , Male , Middle Aged , Glucocorticoids/adverse effects , Glucocorticoids/administration & dosage , Adult , Aged , Osteoporosis/blood , Biomarkers/blood , Hormone Replacement Therapy , Peptides/blood , Osteocalcin/blood , Adaptor Proteins, Signal Transducing , Peptide Fragments/blood , Procollagen/blood , Alkaline Phosphatase/blood , Bone Remodeling/drug effects , Collagen Type I/blood , Genetic Markers , Absorptiometry, Photon , Hydrocortisone/blood , Intercellular Signaling Peptides and Proteins/blood , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/drug effects , Young Adult
7.
Hepatol Commun ; 8(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38358377

BACKGROUND: The prevalence of NAFLD is rapidly increasing. NAFLD can progress to NASH, fibrosis, cirrhosis, and HCC, which will soon become the main causes of liver transplantation. To date, no effective drug for NASH has been approved by the Food and Drug Administration. This is partly due to the lack of reliable human in vitro models. Here, we present a novel human liver spheroid model that can be used to study the mechanisms underlying liver fibrosis formation and degradation. METHODS AND RESULTS: Such spheroids, which contain hepatocytes, stellate cells, KC, and LSECs, spontaneously develop fibrosis that is exacerbated by treatment with free fatty acids. Conditioned medium from activated LSECs caused similar activation of fibrosis in spheroids containing primary human hepatocyte and NPCs, indicating the action of soluble mediators from the LSECs. Spheroids containing LSECs treated with free fatty acids produced tissue inhibitor of metalloproteinases inhibitor 1, a matrix metalloproteinases inhibitor important for fibrosis progression. Tissue inhibitor of metalloproteinases inhibitor 1 knockdown using siRNA led to a reduction in collagen and procollagen accumulation, which could be partially rescued using a potent matrix metalloproteinases inhibitor. Interestingly, tissue inhibitor of metalloproteinases inhibitor 1 was found to be expressed at higher levels, specifically in a subtype of endothelial cells in the pericentral region of human fibrotic livers, than in control livers. CONCLUSION: Potential anti-NASH drugs and compounds were evaluated for their efficacy in reducing collagen accumulation, and we found differences in specificity between spheroids with and without LSECs. This new human NASH model may reveal novel mechanisms for the regulation of liver fibrosis and provide a more appropriate model for screening drugs against NASH.


Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , United States , Humans , Endothelial Cells , Fatty Acids, Nonesterified , Liver Cirrhosis , Procollagen , Tissue Inhibitor of Metalloproteinases , Matrix Metalloproteinases , Tissue Inhibitor of Metalloproteinase-1/genetics
8.
Clin J Am Soc Nephrol ; 19(4): 483-493, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38030558

BACKGROUND: Bone loss after kidney transplantation is highly variable. We investigated whether changes in bone turnover markers associate with bone loss during the first post-transplant year. METHODS: Bone mineral density (BMD) was measured at 0 and 12 months, with biointact parathyroid hormone, bone-specific alkaline phosphatase (BALP), intact procollagen type I N -terminal propeptide (PINP), and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) measured at 0, 3, and 12 months post-transplant ( N =209). Paired transiliac bone biopsies were available in a subset ( n =49). Between-group differences were evaluated by Student's t test, Wilcoxon signed-rank test, or Pearson's chi-squared test. RESULTS: Changes in BMD varied from -22% to +17%/yr. Compared with patients with no change (±2.5%/yr), patients who gained BMD had higher levels of parathyroid hormone (236 versus 136 pg/ml), BALP (31.7 versus 18.8 µ g/L), and Intact PINP (121.9 versus 70.4 µ g/L) at time of transplantation; a greater decrease in BALP (-40% versus -21%) and Intact PINP (-43% versus -13%) by 3 months; and lower levels of Intact PINP (36.3 versus 60.0 µ g/L) at 12 months post-transplant. Patients who lost BMD had a less marked decrease, or even increase, in Intact PINP (+22% versus -13%) and TRAP5b (-27% versus -43%) at 3 months and higher Intact PINP (83.7 versus 60.0 µ g/L) and TRAP5b (3.89 versus 3.16 U/L) at 12 months compared with patients with no change. If none of the biomarkers decreased by the least significant change at 3 months, an almost two-fold (69% versus 36%) higher occurrence of bone loss was seen at 12 months post-transplant. CONCLUSIONS: Bone loss after kidney transplantation was highly variable. Resolution of high bone turnover, as reflected by decreasing bone turnover markers, associated with BMD gain, while increasing bone turnover markers associated with bone loss.


Bone Density Conservation Agents , Bone Diseases, Metabolic , Kidney Transplantation , Humans , Bone Density , Kidney Transplantation/adverse effects , Parathyroid Hormone , Procollagen , Alkaline Phosphatase , Tartrate-Resistant Acid Phosphatase , Bone Remodeling , Biomarkers
9.
Int J Sport Nutr Exerc Metab ; 34(1): 20-29, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37917954

Assessing bone's response to physical activity interventions is challenging. This randomized controlled trial investigates if changes in bone turnover markers can offer an early evaluation of a physical activity intervention's effectiveness in improving bone mineral density (BMD) in premenopausal women. Participants in the intervention group (n = 27, with 24 completing the trial) were instructed to walk at least 10,000 steps every day on a brisk walk and to execute 60 jumps daily, each surpassing 4g of acceleration, using an accelerometer-based wearable device. Meanwhile, the control group (n = 26, with 18 completing the trial) continued with their usual lifestyle. Bone turnover markers, comprising of C-terminal telopeptide of Type I collagen, procollagen Type 1 N-terminal propeptide, and total osteocalcin (carboxylated and undercarboxylated) were measured at baseline and midway through the intervention (3 months). Dual-energy X-ray absorptiometry scans of the hip and lumbar spine were conducted at baseline and the end of the intervention (6 months) to estimate BMD. Analysis of covariance exhibited significant differences between groups in procollagen Type 1 N-terminal propeptide (-6.74 µg/L, p = .023) and C-terminal telopeptide of Type I collagen (-83 ng/L, p = .043) after 3 months, and in femoral neck BMD (+0.024 g/cm2, p = .016), total hip BMD (+0.036 g/cm2, p = .004), and lumbar spine BMD (+0.026 g/cm2, p = .020) after 6 months. A significant correlation (r = -.73; p < .001) was detected between reductions in C-terminal telopeptide of Type I collagen and increases in femoral neck BMD. In conclusion, this intervention improved BMD in premenopausal women, with bone turnover markers potentially useful for early intervention assessment, though further research is needed.


Bone Density , Procollagen , Humans , Female , Osteogenesis , Bone Remodeling , Exercise , Biomarkers
10.
Proc Natl Acad Sci U S A ; 121(1): e2310404120, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38147551

Newly synthesized secretory proteins are exported from the endoplasmic reticulum (ER) at specialized subcompartments called exit sites (ERES). Cargoes like procollagen are too large for export by the standard COPII-coated vesicle of 60 nm average diameter. We have previously suggested that procollagen is transported from the ER to the next secretory organelle, the ER-Golgi intermediate compartment (ERGIC), in TANGO1-dependent interorganelle tunnels. In the theoretical model presented here, we suggest that intrinsically disordered domains of TANGO1 in the ER lumen induce an entropic contraction, which exerts a force that draws procollagen toward the ERES. Within this framework, molecular gradients of pH and/or HSP47 between the ER and ERGIC create a force in the order of tens of femto-Newtons. This force is substantial enough to propel procollagen from the ER at a speed of approximately 1 nm · s-1. This calculated speed and the quantities of collagen secreted are similar to its observed physiological secretion rate in fibroblasts, consistent with the proposal that ER export is the rate-limiting step for procollagen secretion. Hence, the mechanism we propose is theoretically adequate to explain how cells can utilize molecular gradients and export procollagens at a rate commensurate with physiological needs.


Collagen , Procollagen , Procollagen/metabolism , Protein Transport/physiology , Collagen/metabolism , Biological Transport , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , COP-Coated Vesicles/metabolism
11.
Malays J Pathol ; 45(3): 391-396, 2023 Dec.
Article En | MEDLINE | ID: mdl-38155380

BACKGROUND: Well defined reference intervals are central to the utility of serum C-terminal telopeptide of type 1 collagen (CTX) and N-terminal propeptide of type I procollagen (P1NP), designated as reference markers in osteoporosis, and useful for monitoring therapeutic response in that condition. This study reports the reference intervals for plasma CTX and serum P1NP in a multi-ethnic Malaysian population. METHODS: Ethnic Malay, Chinese or Indian subjects aged 45-90 years old were recruited from Selangor, Malaysia from June 2016 to August 2018. Subjects with known medical conditions (e.g., bone disorders, malnutrition, immobilisation, renal impairment, hormonal disorders) and medications (including regular calcium or vitamin D supplements) that may affect CTX and P1NP were excluded. Additionally, subjects with osteoporosis or fracture on imaging studies were excluded. The blood samples were collected between 8 a.m. and 9 a.m. in fasting state. The CTX and P1NP were measured on Roche e411 platform in batches. RESULTS: The 2.5th-97.5th percentiles reference intervals (and bootstrapped 90%CI) for plasma CTX in men (n = 91) were 132 (94-175) - 775 (667-990) ng/L; in post-menopausal women (n = 132) 152 (134-177) - 1025 (834-1293) ng/L. The serum P1NP reference intervals in men were 23.7 (19.1-26.4) - 83.9 (74.0-105.0) µg/L, and in post-menopausal women, 25.9 (19.5-29.3) - 142.1 (104.7-229.7) µg/L. CONCLUSION: The reference intervals for plasma CTX and serum PINP for older Malaysian men and post-menopausal women are somewhat different to other published studies from the region, emphasising the importance of establishing specific reference intervals for each population.


Collagen Type I , Osteoporosis , Peptide Fragments , Procollagen , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Asian People , Biomarkers/blood , Peptide Fragments/blood , Procollagen/blood , Reference Values , Collagen Type I/blood
12.
Front Cell Infect Microbiol ; 13: 1249038, 2023.
Article En | MEDLINE | ID: mdl-37860066

Background: The coronavirus disease 2019 (COVID-19) pandemic is a rapidly evolving global emergency and continuously poses a serious threat to public health, highlighting the urgent need of identifying biomarkers for disease severity and progression. In order to early identify severe and critical patients, we retrospectively analyze the clinical characteristics and risk indicators of severe disease in patients with corona virus disease 2019 (COVID-19). Methods: A total of 420 confirmed COVID-19 patients were included in the study. According to the "Diagnosis and Treatment of novel coronavirus Pneumonia (10th Edition)", the cases were divided into mild group (n = 243) and severe group (n =177). Laboratory parameters were analyzed in combination with clinical data. Results: Male patients over 46 years who have smoking habits were more likely to suffer from severe COVID-19. Critically ill patients had lower lymphocyte counts and red blood cell counts, and higher white blood cell counts (P<0.05). Expectedly, serum inflammatory factors (NLR, PLR, LMR, CLR, PCT, CRP), coagulation markers (APTT, PT, TT, FIB, D-Dimer), Myocardial damage markers (hs-TNT, LDH) were significantly increased (P<0.05) in severe COVID-19 patients. Surprisedly, those patients showed obviously elevated levels of common tumor markers (ProGRP, CYFRA21-1, SCC, NSE) (P<0.05). In this case, the levels of tumor marker reflected more the condition of inflammation than the growth of tumor. More importantly, HA and PIIIN-P were highly associated with COVID-19 severity. The AUC of the ROC curve for the diagnosis of severe COVID-19 by HA and PIIIN-P was 0.826. Meanwhile, HA was positively correlated with myocardial damage markers (hs-TNT, LDH). PIIIN-P was positively correlated with myocardial damage markers (hs-TNT, LDH) and inflammatory factors (NLR, PLR, LMR, CLR, ProGRP, SCC, PCT, CRP). On the contrary, PIIIN-P was negatively correlated with pulmonary function indexes (oxygenation index and oxygen saturation of hemoglobin). Conclusion: HA and PIIIN-P are highly associated with disease severity and progression of COVID-19 and can be used as new markers for the prediction of severe COVID-19.


COVID-19 , Humans , Male , COVID-19/diagnosis , Procollagen , Hyaluronic Acid , Retrospective Studies , Inflammation , Biomarkers , Patient Acuity
13.
F S Sci ; 4(4): 327-338, 2023 11.
Article En | MEDLINE | ID: mdl-37797815

OBJECTIVE: To determine whether cyclic strain affects fibroid cell cytoskeletal organization, proliferation, and collagen synthesis differently than myometrial cells. DESIGN: A basic science study using primary cultures of patient-matched myometrial and fibroid cells. SETTING: Academic laboratory. PATIENT(S): Premenopausal women undergoing myomectomy or hysterectomy for the treatment of symptomatic uterine fibroids. INTERVENTION(S): Application of uniaxial strain patterns mimicking periovulation, menses, or dysmenorrhea using the Flexcell tension system or static control. Secondarily, inhibition of G protein-coupled estrogen receptor-1 and phosphatidylinositol 3-kinase. MAIN OUTCOME MEASURE(S): Cell alignment, cell number, and collagen content. RESULT(S): Menses-strained cells demonstrated the most variation in cell alignment, cell proliferation, and procollagen content between myometrial and fibroid cells. Procollagen content decreased in myometrial cells with increasing strain amplitude and decreasing frequency. G protein-coupled estrogen receptor-1 inhibition decreases cellular alignment in the presence of strain. CONCLUSION(S): Mechanotransduction affecting cytoskeletal arrangement through the G protein-coupled estrogen receptor-1-phosphatidylinositol 3-kinase pathway is altered in fibroid cells. These results highlight the importance of incorporating mechanical stimulation into the in vitro study of fibroid pathology.


Leiomyoma , Uterine Neoplasms , Humans , Female , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Uterine Neoplasms/therapy , Mechanotransduction, Cellular , Procollagen/metabolism , Receptors, Estrogen/metabolism , Collagen/metabolism , Phosphatidylinositol 3-Kinases , GTP-Binding Proteins/metabolism
14.
Biochemistry (Mosc) ; 88(6): 810-822, 2023 Jun.
Article En | MEDLINE | ID: mdl-37748877

Normalization of secretory activity and differentiation status of mesenchymal cells, including fibroblasts, is an important biomedical problem. One of the possible solutions is modulation of unfolded protein response (UPR) activated during fibroblast differentiation. Here, we investigated the effect of phytohormones on the secretory activity and differentiation of cultured human skin fibroblasts. Based on the analysis of expression of genes encoding UPR markers, abscisic acid (ABA) upregulated expression of the GRP78 and ATF4 genes, while gibberellic acid (GA) upregulated expression of CHOP. Evaluation of the biosynthetic activity of fibroblasts showed that ABA promoted secretion and synthesis of procollagen I and synthesis of fibronectin, as well as the total production of collagen and non-collagen proteins of the extracellular matrix (ECM). ABA also stimulated the synthesis of smooth muscle actin α (α-SMA), which is the marker of myofibroblasts, and increased the number of myofibroblasts in the cell population. On the contrary, GA increased the level of fibronectin secretion, but reduced procollagen I synthesis and the total production of the ECM collagen proteins. GA downregulated the synthesis of α-SMA and decreased the number of myofibroblasts in the cell population. Our results suggest that phytohormones modulate the biosynthetic activity of fibroblasts and affect their differentiation status.


Fibronectins , Plant Growth Regulators , Humans , Fibronectins/genetics , Fibronectins/metabolism , Fibronectins/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Procollagen/genetics , Procollagen/metabolism , Procollagen/pharmacology , Cells, Cultured , Fibroblasts/metabolism , Myofibroblasts/metabolism , Cell Differentiation , Collagen , Extracellular Matrix Proteins/metabolism , Actins/metabolism , Unfolded Protein Response
15.
Biosystems ; 232: 105004, 2023 Oct.
Article En | MEDLINE | ID: mdl-37598999

Collagen synthesis is severely diminished in osteoarthritis; thus, enhancing it may help the regeneration of cartilage. Collagen synthesis is submitted to a large procollagen cycle where the greater part of the newly synthesized protein is degraded inside the cell producing a huge waste of material and energy. We have applied the Metabolic Control Analysis approach to study the control of collagen synthesis flux by means of the response coefficients of the flux with respect to glycine, proline and lysine. Our results show that the main cause of the procollagen cycle is a protein misfolding mainly due to glycine scarcity, as well as a moderate deficiency of proline and lysine for collagen synthesis. Thus, increasing these amino acids in the diet (especially glycine) may well be a strategy for helping cartilage regeneration by enhancing collagen synthesis and reducing its huge waste in the procollagen cycle; this possibly contributes to the treatment and prevention of osteoarthritis.


Lysine , Osteoarthritis , Cattle , Animals , Chondrocytes , Proline , Glycine , Procollagen
17.
Int J Clin Pract ; 2023: 5537182, 2023.
Article En | MEDLINE | ID: mdl-37547099

Objectives: To determine the bone metabolic marker changes from childhood to adolescence and to provide reference values for monitoring bone development in children in Southwest China. Methods: We surveyed 703 participants attending physical examinations from April 2019 and August 2021. Twenty-eight participants were excluded for lack of laboratory tests, and 14 people were excluded for diseases that might affect bone metabolism. A total of 661 children were selected for the study. According to the main developmental periods, the children were divided into preschool, preadolescence, and adolescence groups. Serum bone turnover markers including ß-isomerized C-terminal telopeptide of type I collagen (ß-CTx), N-terminal midfragment of osteocalcin (N-MID), and procollagen type 1 N-propeptide (P1NP) as well as growth and development indices such as serum calcium (Ca), phosphorus (Pi), alkaline phosphatase (ALP), and vitamin D were measured. The changes in bone metabolism-related markers and the correlations between the indices were analyzed. Results: During the development in boys, the levels of ß-CTx and N-MID increased with age from preschool to adolescence, while the levels of P1NP decreased and then increased. In girls, the levels of ß-CTx and N-MID plateaued in early adolescence and showed little change in subsequent adolescence, while the levels of P1NP exhibited a downward trend. The correlations between bone metabolism markers and vitamin D were not significant. Conclusions: The levels of bone metabolism markers differed between boys and girls. Reference intervals can be used as essential tools to examine the levels of bone metabolism markers reasonably.


Peptide Fragments , Procollagen , Male , Child , Female , Humans , Child, Preschool , Adolescent , Vitamin D , Bone and Bones/metabolism , Biomarkers , Vitamins , Bone Remodeling
18.
J Appl Physiol (1985) ; 135(4): 833-839, 2023 10 01.
Article En | MEDLINE | ID: mdl-37650137

Following rupture, the anterior cruciate ligament (ACL) will not heal and therefore more than 400,000 surgical repairs are performed annually. Ligament engineering is one way to meet the increasing need for donor tissue to replace the native ligament; however, currently these tissues are too weak for this purpose. Treating engineered human ligaments with insulin-like growth factor-1 (IGF-1) improves the structure and function of these grafts. Since the anabolic effects of IGF-1 are largely mediated by rapamycin complex I (mTORC1), we used rapamycin to determine whether mTORC1 was necessary for the improvement in collagen content and mechanics of engineered ligaments. The effect of IGF-1 and rapamycin was determined independently and interactions between the two treatments were tested. Grafts were treated for 6 days before mechanical testing and analysis of collagen content. Following 8 days of treatment, mechanical properties increased 34% with IGF-1 and decreased 24.5% with rapamycin. Similarly, collagen content increased 63% with IGF-1 and decreased 36% with rapamycin. Interestingly, there was no interaction between IGF-1 and rapamycin, suggesting that IGF-1 was working in a largely mTORC1-independent manner. Acute treatment with IGF-1 did not alter procollagen synthesis in growth media, even though rapamycin decreased procollagen 55%. IGF-1 decreased collagen degradation 15%, whereas rapamycin increased collagen degradation 10%. Once again, there was no interaction between IGF-1 and rapamycin on collagen degradation. Together, these data suggest that growth factor-dependent increases in collagen synthesis are dependent on mTORC1 activity; however, IGF-1 improves human-engineered ligament mechanics and collagen content by decreasing collagen degradation in a rapamycin-independent manner. How the anticatabolic effects of IGF-1 are regulated have yet to be determined.NEW & NOTEWORTHY IGF-1 increases and rapamycin decreases mechanical and material properties of engineered human ligaments by regulating collagen content and concentration. There was no interaction between IGF-1 and rapamycin, suggesting that IGF-1 and rapamycin work independently. We found that IGF-1 improves collagen content by decreasing collagen degradation in a rapamycin-independent manner, whereas growth factor-dependent increases in collagen synthesis are blocked by rapamycin. These data may explain why interventions to increase IGF-1 have not helped rehabilitation.


Insulin-Like Growth Factor I , Procollagen , Humans , Anterior Cruciate Ligament , Mechanistic Target of Rapamycin Complex 1 , Sirolimus/pharmacology
19.
Actual. osteol ; 19(1): 9-17, ago. 2023. tab
Article Es | LILACS, UNISALUD, BINACIS | ID: biblio-1511347

La sarcopenia asociada a la edad es una condición clínica caracterizada por una disminución en la fuerza, calidad y cantidad de masa muscular así como también en la función muscular. Un biomarcador se define como una característica que es medible objetivamente y evaluable como indicador de un proceso biológico normal, patológico o respuesta terapéutica a una intervención farmacológica. Los marcadores bioquímicos propuestos para el estudio de la sarcopenia pueden ser categorizados en dos grupos. El primero de ellos evalúa el estatus musculoesquelético; este panel de marcadores está formado por miostatina/folistatina, procolágeno aminoterminal tipo III e índice de sarcopenia. El segundo grupo de marcadores bioquímicos evalúa factores causales, para lo cual se sugiere medir el factor de crecimiento insulino-símil tipo 1 (IGF-1), dehidroepiandrosterona (DHEAS), cortisol, facto-res inflamatorios [proteína C reactiva (PCR), interleuquina 6 (IL-6) y factor de necrosis tu-moral (TNF-a)]. Las recomendaciones realiza-das están basadas en la evidencia científica disponible en la actualidad y la disponibilidad de la metodología apropiada para cada uno de los biomarcadores. (AU)


Sarcopenia is a progressive and generalized skeletal muscle disorder defined by decrease in the strength, quality and quantity of muscle mass as well as in muscle function. A biomarker is defined as a feature objectively measured and evaluated as an indicator of a normal biologic process, a pathogenic process or a pharmacologic response to therapeutic intervention. The biochemical markers proposed for the study of sarcopenia may be classified in two groups. The first group evaluates the musculoskeletal status, made up by myostatin/follistatin, N-terminal Type III Procollagen and the sarcopenia index. The second evaluates causal factors, where the measurement of the following is suggested: hormones insulin-like growth factor-1 (IGF-I), dehydroepiandrosterone sulphate (DHEAS), cortisol, inflammatory factors [C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a)]. The recommendations made are based on scientific evidence currently available and the appropriate methodology availability for each biomarker. (AU)


Humans , Biomarkers/metabolism , Sarcopenia/drug therapy , Muscles/drug effects , Gonadal Steroid Hormones/analysis , Procollagen , Creatinine , Peptide Hormones/analysis , Follistatin/pharmacology , Adipokines/pharmacology , Myostatin/pharmacology , Sarcopenia/diagnosis , Muscles/metabolism
20.
J Bone Miner Metab ; 41(5): 682-692, 2023 Sep.
Article En | MEDLINE | ID: mdl-37410202

INTRODUCTION: The burden and mechanisms of endocrine therapy-related bone loss are well known, while there are limited data on chemotherapy-induced bone resorption. The study aimed to evaluate the effect of cytotoxic chemotherapy on bone homeostasis among postmenopausal women with non-metastatic breast cancer. MATERIALS AND METHODS: Early and locally advanced postmenopausal non-metastatic breast cancer patients aged 45 to 65 planned for three cycles of anthracycline and four cycles of taxane chemotherapy administered along with dexamethasone (cumulative dose-256 mg) as an antiemetic from June 2018 to December 2021 were included. Bone mineral density (BMD), bone turnover markers, calciotropic hormones, pro-inflammatory cytokines, oxidative stress, and total antioxidant levels (TAS) were measured. RESULTS: We recruited 109 patients, with early 34 (31.2%) and locally advanced breast cancer 75 (68.8%) with median age 53 (45-65) years. There was a significant decrease in the % BMD at the lumbar spine, neck of the femur, and total hip post-chemotherapy. There was a significant increase in serum C-terminal telopeptide of type I collagen (CTX) and procollagen type I N-terminal propeptide (PINP) levels post-chemotherapy. PINP/CTX ratio significantly decreased post-chemotherapy. Serum 25-OH vitamin D was significantly reduced with a compensatory increase in plasma iPTH levels. The change in CTX, PINP/CTX ratio, 25-OH vitamin D, iPTH, and oxidative stress index was more pronounced during anthracycline as taxane chemotherapy. There were no significant changes in pro-inflammatory cytokine levels. CONCLUSION: Chemotherapy and dexamethasone as antiemetic resulted in significant bone loss, as evidenced by bone turnover markers. Further studies are required to understand the mechanism of chemotherapy-induced bone loss and the need for bone-strengthening agents during chemotherapy.


Antiemetics , Antineoplastic Agents , Bone Diseases, Metabolic , Breast Neoplasms , Osteoporosis, Postmenopausal , Humans , Female , Middle Aged , Peptides , Postmenopause , Breast Neoplasms/drug therapy , Bone Remodeling , Biomarkers , Bone Density , Collagen Type I , Procollagen , Vitamin D , Lumbar Vertebrae , Vitamins , Antineoplastic Agents/adverse effects , Dexamethasone
...